Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator.
نویسندگان
چکیده
Haa1 is a transcriptional activator required for Saccharomyces cerevisiae adaptation to weak acids. Here we show that the constitutive HAA1-overexpressing strain acquired a higher level of acetic acid tolerance. Under conditions of acetic acid stress, the intracellular level of acetic acid was significantly lower in HAA1-overexpressing cells than in the wild-type cells.
منابع مشابه
Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms
BACKGROUND Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. ...
متن کاملGenome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants
BACKGROUND Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries. RESULTS This st...
متن کاملPolygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae
BACKGROUND Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic acid tolerance naturally present in some Saccharomyces cerevisiae strains is unknown. Identificati...
متن کاملIdentification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
The transcription factor Haa1 is the main player in reprogramming yeast genomic expression in response to acetic acid stress. Mapping of the promoter region of one of the Haa1-activated genes, TPO3, allowed the identification of an acetic acid responsive element (ACRE) to which Haa1 binds in vivo. The in silico analysis of the promoter regions of the genes of the Haa1-regulon led to the identif...
متن کاملTranscriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 78 22 شماره
صفحات -
تاریخ انتشار 2012